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Abstract

This paper contains inequalities for the expectations
of permutation-invariant concave functions of the partial
sums of nonnegative exchangeable random variables. Two
majorization inequalities are derived, and an application in

reliability theory is discussed.
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l. 1Introduction and Summary

. For fixed n > 1 let X = (X;,...,X ) denote an n-dimensional
é ' random vector with density function f(x) that is absolutely

Q continuous w.r.t. the Lebesgue measure or the product measure
of counting measures. xl,...,xn are said to be exchange-
able+ if £ is invariant under permutations of its arguments.
This paper concerns majorization inequalities for the expec-
' tations of certain functions of xl""'xn’

' The notion of majorization defines a partial ordering

of the diversity of the components of vectors. Let

L a= (al,...,an), b = (bl,...,bn) be two n-dimensional vectors
4 and let a) 2 L., 02 ay’ b(l) 2 ... 2 b(n) denote their
ordered components. a is said to majorize b,(in symbols

a » b, if

a

=m~3

m
(i) 2 i b(i) form=1,...,n-1
o n n
and Z a;, = I b,. It is known that a » b iff there exists

1 1
o a doubly stochastic matrix Q such that b = aQ, i.e., b is an
"average" of a. A function y: R® > R is said to be a Schur-
concave function if a > b implies y(a) < y(b). For a full
" treatment of majorization and Schur functions, see Marshall

e and Olkin (1979).

In an earlier paper Marshall and Proschan (1965) proved

T . . .
More precisely, Xl,...,xn are finitely exchangeable instead

of exchangeable. For the minor distinction between finite
exchangeability and exchangeability see e.g., Tong ((1980),
p. 96.
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; the following inequality: Let Xl""'xn be exchangeable and

let ¢: R® + R be Borel measurable, permutation invariant and

o concave. If a,,...,a are more diverse than b,,...,b in
Ve

[}

:ﬁ the sense of majorization, i.e., if a » b, then

Ll

E¢(b1x1"“'bhxn) i_E¢(alxl,...,aan) provided the expectations
el exist. This inequality yields a number of useful results and
Qk implies many previously-known results as special cases (see,
e.g., Corollaries 1-3 in their paper). In this paper, we

o prove some related results and discuss their applications. The
fﬁ : ) results (Theorems 1 and 2) involve the expectations of func-

tions of partial sums of exchangeable random variables, and

* depend on the notion of majorization in a different manner.
v
&t
'? - For fixed k < n, let r = (rll---,rk) be a vector of positive
1] k .
) integers such that I r; = n. Let X,,...,X be exchangeable
B 1
ﬁ random variables and let Xr = (Y{E),...,YéE)) denote a
‘Vt', V A~ -
'3‘ k-dimensional random vector such that
J r. - r,+r
" (x) _ 2 (r) _ 1.2 (r) _ n
:,5 Y& = DX, YR = L XY o= z X,
m: 7 1 rl+1 r1+...+rk_1+l
4
Sﬁ that is, Y;E) is the sum of Ty of such xi's and Y{E),...,Yég)
K do not contain any common elements. Let s = (s;,...,8,)
L'l’ :
:& denote another such vector and X(s) be defined similarly.
4y
ﬁ Let ¢(y) = ¢(yl,...,yk) denote any real-valued function that
@ , k
ﬁt ' is permutation invariant and concave for every fixed L Y-
) : . L
Q: We show that (Theorem 1) if s » r and if the X, 's are non-
[/

o negative exchangeable random variables, then E¢(g(£)) 2 E¢(z(§)).

A The needs for considering such a random vector Y and for

XYM A LAl 0 PYUOR B CMCT TN Lo At ) AN i)
‘4‘5 P ._‘!;‘géi\., fr e ah e 4 lfnnl.|‘h‘g..hp ﬁ" .
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studying inequalities of this type arise from certain appli-
cations. One such application concerns the optimal arrange-
ment policy for parallel and series systems in reliability
theory, and is given in Section 4. In Theorem 2 we show
that, by imposing an additional condition on the joint den-
sity £, the same inequality holds for all Schur-concave func-
tions ¢.

Since the theorems apply to nonnegative random variables
only, a natural question is whether or not the same state-
ments hold for random varaibles which may take negative
values. We show in Section 3 that the answer is negative eﬁen

for i.i.d. normal variables.

2. The Main Results

For the theorems stated in this section, the density
function f of X = (xl,...,xn) is assumed to be absolutely
continuous w.r.t. the Lebesgue measure or the product measure
of the counting measures. The proofs will be given for the
former. For the product of counting measures, simply change

the integral signs to summation signs.

Theorem 1. If (i) £ is permutatioh invariant and £ = 0 if any

X, <0 (i=11,...,n), (ii) ¢(y,s...,Y,) is a concave function
i x - : 1 k
for every fixed I yj, and (iii) s » r, then

E¢(Y{£),...,Y££)) > E¢(Y{§),...,Y(§)) (2.1)

holds provided that the expectations exist.




Proof. It is well-known (Marshall and Olkin (1979), Chapter

2) that for simplicity one may assume that

s1 > rl > r2 > 52 = t, rl + r, = s1 + Sy = d
and rj = sj for j = 3,...,k. Let us define
t d

2, =1 X,, 2, = z X.
1 71 2 s+l

and Y. = Y.(E) = yf,%) for 3 = 3,...,k. Let

J J J
‘ 9(29,2y) = g(z3:2,]%00¥30--207) (2.2)

d ~ denote the conditional density of (zl,zz) given

‘ 50 = (xt+l"'°’xsl) = 50 and Yj = yj (j = 3,...,k). Then it
; is easy to check that g(zl,zz) = g(zz,zl) and

E¢(Y{£),-..,Yé£)) = E[ff¢(zl+ul,zz+u2.y3,...,yk)g(zl,zz)dzldz

2]

y - -

=E( JJ ¢(zl+u1,zz+u2,y3,...,yk)g(zl,zz)dzldz2
z, 22
1 2
+ IS ¢(21+u1p22+u2,y3,...,yk) g(zl,zz)dzldzzl
z2,<2
1 ™2
= E[ [S {¢(21+ul.zz+u2,y3,...,yk)
z,22,

: T 51
' where (u,,u,) = I x., L X.). Now let
17727 g1 L jeper d
, Sy 1
¢ (vl,vz) = ( I x.,0). Since xi 2 0, there exists an
i=t+l
4
a = ==c¢ [0,1) which satisfies

1

L) DRSO
;x”‘ ;’\‘.' 1 4

L

\ 4 AN ROOODOBOOON MR WA
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{ (zl+ul,22+u2) = a(zl+vl,zz+v2) + (l-a)(zl+v2,zz+v1),
(zl+u2,zz+ul) = (l-a)(zl+vl,zz+v2) + a(zl+v2,zz+vl)
| for every point in {(zl,zz): z, 2 zz}. Thus, for every fixed

(go,y3,...,yk) and every such (zl,zz),
¢(zl+ul,22+u2,y3,...,yk) + ¢(zl+u2,zz+ul,y3,...,yk)
2 a¢(zl+vl,zz+v2,y3,...,yk) + (l-a) ¢(zl+v2,zz+vl,y3,...,yk)
+ ‘l-a)¢(zl+vl,zz+v2,y3,...,yk) f a¢(gl+v2,zz+vl,y3,...,yk).
Consequently one has: |
E¢(Y](_£) feee ,Yé’i) )

. 2 E[ JS {¢(zl+v1,zz+v2,y3,...,yk) + ¢(zl+v2,22+vl,y3,...,yk)}
N zlzz2
x g(zl,zz)dzldzzl

(s)

= E¢ (¥,

as to be shown. Q

In the next theorem we weaken the condition on ¢ to be
any measurable Schur-concave function, and impose a stronger

condition on the conditional density g.

Theorem 2. If (i) f is permutation invariant, f = 0 for any

N x; <0 (i =1,...,n), and such that the conditional density

g(zl,zz) defined in (2.2) is a Schur-concave function of

, (zl,zz) for every fixed (50,y ,...,yk) and every t > 0,

3
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(ii) ¢(yl,...,yk) is a Borel-measurable Schur-concave function,
and (iii) s > r, then (2.1) holds provided the expectations

exist.

Proof. We shall follow the notation developed in the proof
of Theorem 1 and compare E¢(g(£!) with E¢(X(§)) for s > r.

and r. = s.

Again for simplicity assume that s, > r 2 3 3

2r, >s
1

1 2

for j > 2. Then one can write

>
|

(£),y(2) - (8) y(s)
E[¢(Yl IY2 IY3I---IYk) ¢(Yl IYZ IY3I~"IYk)]

.E[ff{¢'(zl+u1.22+u2)-¢'(zl+ul+u2,zz)}g(zl,zz)dzldzzl

where for notational convenience ¢'(y1,y2) stands for
¢(yl,y2,y3,...,yk) and g is the conditional density of

(Zl'zz)’ It is straightforward to verify that, after following
the same steps as in the proof of Theorem J.1 in Marshall and

Olkin (1979, p. 100), one has

>
]

El J//J {¢'(2,,2,4u,) - ¢'(z,+u.,2.)}
z2.22 1772 "2 MRS R 1o
1772
x {g(zl-ullzz) - g(zl,zz-ul)}dzldzzl.

Since ¢' and g are Schur-concave functions and u; > 0

(L =1,2), one has
(zl+u2,22) > (zl,zz+u2),

(zl,zz-ul) > (zl-ul,zz).

Thus 4 > 0. a
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Remark. Proschan and Sethuraman (1977) previously proved that
if xl,...,xn are i.i.d. nonnegative random variables with a
common density h(x) that is log-concave, then the conclusion
in Theorem 2 holds. Their proof depends on an application of
the main theorem in their paper and on a TP2 property of the
convolution of log-concave densities given in Karlin and
Proschan (1960). It is noted here that their result now fol-

lows immediately from Theorem 2. This is so because if

xl,...,xn are i.i.d. random variables with a common density

S2 S1*s2
that is log-concave, then I X, and I X, are independent
’ 1 sy+l ’

random variables with a common density that is also log-concave
(see e.g., Das Gupta (1973, Theorem 4.2)). Consequently, the
S1 S1+82
joint density of ( Xi, z Xi) is a Schur-concave func-
7 1 Sl+l
tion and Theorem 2 applies.

In most applications, the assumption on the Schur-
concavity of the conditional density g(zl,zz) of (Zl'zz) is
not easy to verify. It is clear that the assumption holds

if the following conjecture concerning the convolution of

Schur-concave random variables is true:

Conjecture 1. For n = mk and X = (xl,...,xn) let
_ i
z- = Z xi' j = l,z,...,k.
I (§-1)m+1
If the joint density of X is a Schur-concave function of x
for x « R", then the joint density of Z=(2ys--.42) is a

Schur-concave function of 2 for z ¢ Rk for all positive inte-

gers k and m.

BSOS AN i)
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It is not yet known to us whether this conjecture is

d . true or not for the continuous case. However, the following

Y counterexample shows that at least it is not true for the

+2 SR

)

o discrete case.

&

" Example 1. Consider k = m = 2, and assume that (xl,xz,x3,x4)
o

;? takes only integer values 0,1,2,3. Let Zl = Xl + Xz,

"

!"\\ — - - C e PR

ty z, = X3 + X, Then P[Zl = 4, Z, = 2] is the probability of
“h the set of the following points:

5
f* (3,1,1,1), (1,3,1,1), (2,2,1,1), (2,2,2,0) (2,2,0,2)
i V ’

: (3,1,2,0), (3,1,0,2), (1,3,2,0), (L,3,0,2)

u".,
,ﬁ, Similarly P[Zl =2, = 3) is the probability of the set con-
e sisting of

Q,

23 (2111211)1 (2111112)1 (1121211)1 (1121112)1

:f (2,1,3,0), (2,1,0,3), (1,2,3,0), (1,2,0,3),
o (3,0,2,1), (3,0,1,2), (0,3,2,1), (0,3,1,2),

o
w (3,0,3,0), (3,0,0,3), (0,3,3,0), (0,3,0,3).
)

[

‘ If the joint density of (xl,xz,x3,x4) takes values 1/14 for

: each of the points (3,1,1,1), (2,2,2,0), (2,2,1,1) and all of
[é their permutations, and zero otherwise, then it is a Schur-
(.{

® concave function on the product of integer spaces,and one has
s
3 . o5 4 ) _

I

N

‘ A related problem to Conjecture 1 is the study of a sub-
W)
jﬁ class of Schur-concave densities. One such subclass is the

CLA L s \ ¢
S AN R R R LY RN OOV
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class of all log-concave densities which are permutation
invariant. This consideration leads us to the next conjec-

Y ture.

) Conjecture 2. 1In Conjecture 1 if the joint density of X is

log-concave and permutation invariant, then the joint density
3 of 2 is Schur-concave (or even log-concave) and permutation

Y invariant.

3. &n Example for Random Variables which are Not Nonnegative

B In view of the fact that in Marshall and Proschan (1965)
the random variables are not necessarily nonnegative, it might
be tempting to think that results similar to our Theorems 1

' and 2 might also hold when the condition that X, = 0 a.s. is

)

. removed. In the following we show that this is not true

)

1 even for i.i.d. normal variables.

; Consider, for n = 2m, independent normal variables

. Xl,...,xn with means zero and variances one. For t < m

?

U

o consider

"

A: t n

. Y, = I X., Y, = ¥ X.,

: og=p 1 2 ¢ i

; : ‘n

E- and denote U = Yl-YZ, vV = Y1+Y2 = i xi. Then (U,V) has a
" bivariate normal distribution with means zero, variances n,
q

iy and correlation 2t/n - 1. Thus the conditional distribution
\ ‘

; of U given V = v is normal with mean %(Zt—n)v and variance
¥

k °§[V=v = 4t (n-t)/n. Now choose n = 4 and for € > 0 define

OCO0000 JOU) D / . OACOOO IR A ) AR ANS i MM 300G
«._"-.‘Ya"',"l't\“o.',“.‘.n‘tla‘:n':'l‘,\h‘.' s "‘of.‘t'. VL ALOLAN "x“-"‘p'" RO X XS BERR RSSO RO OO DO

L ﬁ.f! i
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&k -(y.=y )2 for 0 < |y,+y,| s ¢
R _ 142 1742
¥, ¢(yl’Y2) =
o o 0 otherwise.
Py
Ao Then ¢ is permutation invariant and concave in (yl,yz) for
oy
ﬁh fixed Y Y, It follows that
"y,
Q; 4 2 4 4
E[{¢(X;, T X,) = ¢(Z X,, T X,)}|Z X, = 0]
$§ 1" 5,71 1 1 31 1 1
e 4 4 2 4
e = -Var ((X, - I X,) |V = 2 X; = 0) + Var((z X; - I X;) |V = 0)
2 1 1 3
MY
,_3'“ = -4(4-1)/4 + 4 x2(4-2)/4 = 1 > 0.
f..l
i |
éh - By continuity, there exists an € > 0 small enough such that
o 4 2 4
oY E[¢(Xl, z Xi) - ¢(Z xi, z xi)]
N 2 1 3 '
N € 4 2 4 4 4
o = [ E[{¢(Xy, £ X;) = ¢(Z X,, Z X,)|Z X, = v]aP[Z X, < v] > O.
| ¢ 1m a1 1 i3 i 11
AT
s; 4. An Application in Reliability Theory
'§% In this section we state an application of Theorem 1 in
;) reliability theory. Consider n exchangeable components with
l".éj
§? life lengths xl,...,xn which are obviously nonnegative. If
. .
ﬁ: the components are manufactured independently, then the
; joint density f of the Xi's is the product of the common
iy, ’
Lg marginal density; otherwise, if they are manufactured under
g
m' the influence of some common factors or a common environment,
'\, : .
;” then it is well-known that f is a mixture and the random
73 variables are conditionally i.i.d. 1In either case f is
;s permutation invariant.
o Now suppose that a system consists of k subsystems, and

B

K L ¢ P, e ~» v , ) ™ IR L 0N N T AT TN T
STt AROALAAN O ‘ RSP N , -
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that the j-th subsystem, consisting of rj 2 1 such components,
is required to operate properly with one component in operation

and the others in a standby capacity (j = 1,...,k). Then the
r.+...+r.
life length Yj of the j-th sybsystem is 1 z J X.. Now

1
Fl+...+r5_q+1

=1 .
let Y(l) < Y(Z) € eue < Y(k) denote the order st;tlstlcs of
Y.,.«.,¥, and r = (r,,...,r,) be an allocation vector such
1l k ~ x 1l k .
that rj 2 1 and Z rj = n. When the subsystems are connected
1
in series, then the life length of the system is Y On the

(1)°
other hand if they are connected in parallel, then it is Y

(k) °
k
Now for fixed cy 20,z cjy(j) is permutation invariant and is
1 _ - .

a concave function (a convex) function of (yl,...,yk) given
k
i yj if € % ... 20 (if c; $ ... S ¢C
Theorem 1 provides a partial ordering for the expected life

k). Consequently,

length of the system for series and parallel systems. In
particular, for series systems the optimal allocation policy
is such that Irj-rj.l < 1 for all j # j', and for parallel
systems an optimal policy is that r. = n-k+l and r, = ... =

1 2

rk = 1.
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